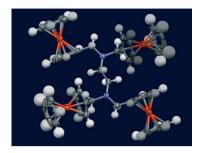

EU ChemSoc

The EUChemSoc Societies have taken the significant step into the future by merging their traditional journals, to form two leading chemistry journals, the European Journal of Inorganic Chemistry and the European Journal of Organic Chemistry. Three further **EUChemSoc Societies (Austria,** Czech Republic and Sweden) are Associates of the two journals.

COVER PICTURE

The cover picture shows how a novel tetranuclear Ni^{II} complex [Ni₄L₄¹(μ -tp- κ ₄-O)(H₂O)₂(μ -tp- κ ₂-O)] 2C₂H₅OH·CH₃OH·3H₂O [L¹ = N-(3-aminopropyl)-5-bromosalicylaldimine] acts as an active catalyst for the partial oxidation of cyclohexene into its epoxide product when it is immobilized over a network of hexagonal mesoporous silica. Herein the catalytic sites allow the formation of epoxide over their surfaces. tert-Butyl hydroperoxide acts as an oxidant for the partial oxidation process. A dinuclear unit is formed, in which the NiII is bridged by a phenolato group, and two such units are connected through a terephthalate moiety to form a tetranuclear nickel(II) complex. The tetranuclear units are connected to each other by another terephthalate moiety in its bis(monodentate) mode to form one-dimensional networks. Details are described in the article by P. Banerjee et al. on p. 5033 ff. The artwork was designed by Mr. Jishnunil Chakraborty and Mr. Gopal Das.


MICROREVIEW

Metallocene-Containing Dendrimers

A. E. Kaifer* 5015-5027

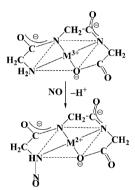
Electron Transfer and Molecular Recognition in Metallocene-Containing Dendrimers

Keywords: Metallocenes / Dendrimers / Electrochemistry / Molecular recognition / Supramolecular chemistry

Dendrimers containing multiple metallocenes on their surface or a single metallocene in their core offer interesting properties in electron-transfer reactions and molecular recognition processes.

SHORT COMMUNICATION

Reductive Nitrosation


D. Shamir, I. Zilbermann,* E. Maimon,

G. Gellerman, H. Cohen,

D. Meyerstein* 5029-5031

Reductive Nitrosation of Peptides Ligated to High-Valent Metal Cations

Keywords: Nitrosation / Peptides / NO / High-valent transition metals

Reductive *N*-nitrosations occur according to a radical mechanism.


FULL PAPERS

Nickel Epoxidation Catalysts

J. Chakraborty, M. Nandi, H. Mayer-Figge, W. S. Sheldrick, L. Sorace, A. Bhaumik, P. Banerjee* 5033-5044

Nickel Complexes with N₂O Donor Ligands: Syntheses, Structures, Catalysis and Magnetic Studies

Keywords: Nickel / N,O ligands / Epoxidation / Heterogeneous catalysis / Magnetic properties

The terephthalato-bridged tetranuclear polymeric Ni^{II} complexes $[Ni_4L_4^{\ I}(\mu-tp-\kappa_4-O)(H_2O)_2(\mu-tp-\kappa_2-O)]\cdot 2C_2H_5OH\cdot CH_3OH\cdot 3H_2O$ (1) and $[Ni_4L_4^{\ 2}(\mu-tp-\kappa_4-O)(H_2O)_2(\mu-tp-\kappa_2-O)]\cdot 3H_2O$ (2) are synthesized along with the dicyanoargentate-bridged polymeric complexes $[Ni^{II}(L^1)(H_2O)\{Ag\cdot (CN)_2\}]_\alpha$ (3) and $[Ni^{II}(L^3)(MeOH)\{Ag(CN)_2\}]_\alpha$ (4). All four complexes are effective catalysts for the epoxidation of alkenes. Variable-temperature magnetic susceptibility measurements of complex 1 show a medium-strength antiferromagnetic coupling between the Ni^{II} centers.

Square-Planar Palladium Complexes

L. Chahen, B. Therrien, G. Süss-Fink* 5045-5051

Square-Planar Diacetatopalladium Complexes with *trans*-Configured Secondary Amine Ligands that Avoid Orthometalation: Ligand Synthesis, Coordination, Molecular Structure and Catalytic Potential for Suzuki Cross-Coupling Reactions

Keywords: Cross-coupling / Palladium / N ligands / Amines / Homogeneous catalysis

OAC
N Pd NR
OAC
N Pd NR
OAC
N Pd NR
OAC
N Pd NR
OAC
1: R = fBu
3: R = Ph
4: R = Ph

trans-Configured square-planar palladium complexes have been synthesized by treating palladium acetate with the amines or diamines. All complexes are found to catalyze Suzuki cross-coupling reactions of deactivated and even sterically hindered arene substrates.

The oxidative addition of (2,2-dibromovinyl)ferrocene to $[Pd(PPh_3)_4]$ yields the $\sigma\text{-alkenyl}$ complex $\textit{trans-}[\{Pd(Br)-(PPh_3)_2\}-C(Br)=C(H)-Fc].$ Nucleophilic attack of NaSR on $[Br_2C=C(H)-Fc]$ produces the $\pi\text{-conjugated}$ dithioether compounds [(RS)CH=C(SR)-Fc], which react with $[Re(thf)(CO)_3(\mu\text{-Br})]_2$ or $[PtCl_2-(PhCN)_2]$ to afford heterodinuclear dithioether complexes.

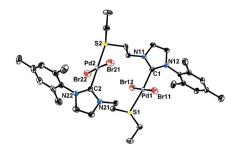
Heterodimetallic Ferrocene Complexes

S. Clément, L. Guyard, M. Knorr,* F. Villafañe, C. Strohmann, M. M. Kubicki 5052-5061

(2,2-Dibromovinyl)ferrocene as a Building Block for the Assembly of Heterodinuclear Complexes – Preparation of an σ -Alkenyl-palladium Complex and Dimetallic Dithioether Complexes

Keywords: Oxidative addition / Thioether ligands / Platinum / Rhenium / Palladium / Electrochemistry

Iron-Only Hydrogenase Models


[Fe₂(S₂C₃H₆)(CO)₅{P(OMe)₃}] (2) and [Fe₂(S₂C₃H₆)(CO)₄{P(OMe)₃}₂] (3) were prepared by the electrochemical reduction of [Fe₂(S₂C₃H₆)(CO)₆] (1) in the presence of trimethyl phosphite. Electrochemical

data indicate a CO-displacement reaction catalyzed by electron transfer. These compouds serves as models for the active site of iron-only hydrogenases. Electrochemical Synthesis of Mono- and Disubstituted Diiron Dithiolate Complexes as Models for the Active Site of Iron-Only Hydrogenases

Keywords: Biomimetic catalysis / Iron-only hydrogenases / Diiron dithiolate / CO substitution / Electrochemistry / Proton reduction

NHC Thioether Ligands

A series of new, bifunctional imidazolium—thioether ligands have been synthesised using a general method and used as N-heterocyclic carbene (NHC) precursors for complexation studies on various transition metals (Ni^{II}, Pd^{II} and Rh^I). Rh^I complexes showed a good activity for the hydrosilylation of ketones.

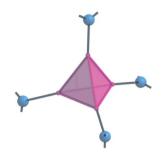
J. Wolf, A. Labande,* J.-C. Daran, R. Poli 5069-5079

Nickel(II), Palladium(II) and Rhodium(I) Complexes of New NHC-Thioether Ligands: Efficient Ketone Hydrosilylation Catalysis by a Cationic Rh Complex

Keywords: N-Heterocyclic carbenes / S ligands / Nickel / Palladium / Rhodium

5007

CONTENTS

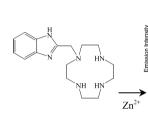

Cluster Chemistry

A. Seifert, G. Linti* 5080-5086

Synthesis and Structure of Tetrameric Gallium(I) Amides

Keywords: Gallium / Amides / Cluster compounds / X-ray structures / Density functional calculations

The gallium(I) amides $GaNR_2$ [NR₂ = tmp, N(SiMe₃)dipp] were prepared from "GaI". They form distorted tetrahedral tetramers in the solid state.


Fluorescent Probes

A. El Majzoub, C. Cadiou, I. Déchamps-Olivier, F. Chuburu,* M. Aplincourt 5087-5097



(Benzimidazolylmethyl)cyclen: A Potential Sensitive Fluorescent PET Chemosensor for Zinc

Keywords: Zinc / Macrocyclic ligands / X-ray diffraction / UV/Vis spectroscopy / Fluorescent probes / Fluorimetric titrations

A new fluorescent probe for Zn^{2+} , namely (benzimidazolylmethyl)cyclen [LH], was designed and synthesised. On addition of

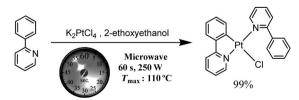
successive amounts of Zn²⁺, the fluorescence emission of LH increases linearly by a factor of 3.

Mixed-Valence Co^{II/III} Complexes

Mixed-Valence Cobalt(II/III) Carboxylate Clusters: Co^{II}₄Co^{III}₂ and Co^{II}Co^{III}₂ Complexes from the Use of 2-(Hydroxymethyl)-pyridine

Keywords: Mixed-valence cobalt complexes / [2-(Hydroxymethyl)pyridine]metal complexes / Linear trinuclear cobalt complexes / Hexanuclear cobalt clusters / Q-band electron paramagnetic resonance

The shown reaction scheme gives a hexanuclear, mixed-valence cationic cluster containing the unprecedented [Co^{II}₄Co^{III}₂(μ₃-OR')₄(μ-OR')₄]⁶⁺ core (the benzoate analogue has a similar structure) and a linear Co^{III}Co^{III} neutral complex containing the [Co^{II}Co^{III}₂(μ-OR')₄]⁴⁺ core, depending on the inorganic anion present; the Co^{II} ions in the hexanuclear clusters are antiferromagnetically coupled.

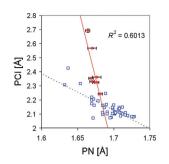

Microwave-Assisted Cycloplatination

N. Godbert, T. Pugliese, I. Aiello, A. Bellusci, A. Crispini, M. Ghedini* 5105-5111

Efficient, Ultrafast, Microwave-Assisted Syntheses of Cycloplatinated Complexes

Keywords: Cycloplatination / Microwave synthesis / Platinum / Antitumor agents / X-ray diffraction

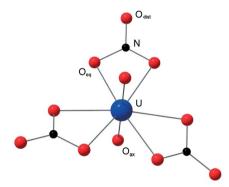
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim



Mononuclear cycloplatinated chlorido complexes containing neutral ligands are synthesised by two different methods, namely conventional and microwave-assisted synthesis. All new complexes have been fully characterised and their crystal structures determined.

N-Heterocyclic Phosphanes

A series of N-heterocyclic chlorophosphanes and 1,3,2-diazaphospholenium salts with different substitution patterns is prepared and characterised by single-crystal X-ray diffraction studies. An analysis of trends in the structural parameters supports the view that the unusual P-Cl bond lengthening is attributable to $n(N)/\sigma^*(P-Cl)$ hyperconjugation.


S. Burck, D. Gudat,* K. Nättinen, M. Nieger, M. Niemeyer, D. Schmid 5112-5119

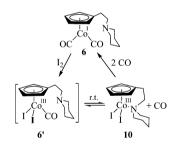
2-Chloro-1,3,2-diazaphospholenes Crystal Structural Study

Keywords: Phosphanes / Halides / X-ray diffraction / Substituent effects / Structure correlation

Speciation of Uranyl Nitrate

Complex formation between the uranyl ion and nitrate ions is investigated in acetonitrile and the ionic liquid [C₄mim][Tf₂N] at room temperature by optical absorption, magnetic circular dichroism and EXAFS spectroscopy. The sharp peaks in the absorption spectrum are characteristic of a $[UO_2(NO_3)_3]^-$ species with D_{3h} coordination symmetry. No evidence is found for the formation of uranyl nitrato complexes in aqueous solution.

K. Servaes, C. Hennig,* I. Billard, C. Gaillard, K. Binnemans, C. Görller-Walrand.

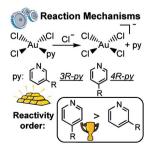

R. Van Deun* 5120-5126

Speciation of Uranyl Nitrato Complexes in Acetonitrile and in the Ionic Liquid 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide

Keywords: EXAFS spectroscopy / Ionic liquids / Uranium / UV/Vis spectroscopy / X-ray absorption spectroscopy

Cyclopentadienylcobalt Complexes

Chelation by the amino-functionalised side chain occurred when the Cp'-cobalt(I) dicarbonyl complexes were oxidised by iodine, resulting in the corresponding Cp'cobalt(III) chelates via diiodocarbonyl intermediates. The stabilities of the intermediates were found to correlate with the I-Co-I angles and the repulsive force from the amino-functionalised groups in the chelates. Complex 6' was reduced to 6 by the CO released upon chelation. Its PPh3-substituted CH2CH2 solvate shows a strong N-H···I hydrogen bond.



L. Li, S. Han, Q. Li, Z. Chen, Z. Pang* 5127-5137

Synthesis and Reactivity of Cobalt Complexes with Pendant Nitrogen Functional Groups

Keywords: Cyclopentadienylcobalt complexes / Carbonylcobalt complexes

The process $AuCl_3(3R-py) + Cl^- \rightarrow AuCl_4^-$ + 3R-py (3R-py = meta-substituted pyridines) was studied in methanol at 25 °C and the data were compared with those found for para-substituted pyridines (4R-py). Until now the two groups of bases have been considered to behave in the same manner in their displacement reactions but, on the contrary, the reactivity of the two classes of N donors is slightly different and follows the order: 4R-py > 3R-py. This kinetic result is explained on the basis of an energetic difference between the frontier orbitals of the AuCl₃(3R-py) and AuCl₃(4R-py) derivatives.

Inorganic Reaction Mechanisms

Displacement of Neutral Nitrogen Donors by Chloride in $AuCl_3(3R-py)$ (3R-py = meta-Substituted Pyridine): Comparison between meta- and para-Substituted Pyridines by Kinetics and DFT Calculations

B. Pitteri,* M. Bortoluzzi 5138-5143

Keywords: Gold / Kinetics / Nitrogen donors / Reaction Mechanism / DFT